A new approach for estimating northern peatland gross primary productivity using a satellite‐sensor‐derived chlorophyll index

نویسندگان

  • A. Harris
  • J. Dash
چکیده

[1] Carbon flux models that are largely driven by remotely sensed data can be used to estimate gross primary productivity (GPP) over large areas, but despite the importance of peatland ecosystems in the global carbon cycle, relatively little attention has been given to determining their success in these ecosystems. This paper is the first to explore the potential of chlorophyll‐based vegetation index models for estimating peatland GPP from satellite data. Using several years of carbon flux data from contrasting peatlands, we explored the relationships between the MERIS terrestrial chlorophyll index (MTCI) and GPP, and determined whether the inclusion of environmental variables such as PAR and temperature, thought to be important determinants of peatland carbon flux, improved upon direct relationships. To place our results in context, we compared the newly developed GPP models with the MODIS (Moderate Resolution Imaging Spectrometer) GPP product. Our results show that simple MTCI‐based models can be used for estimates of interannual and intra‐annual variability in peatland GPP. The MTCI is a good indicator of GPP and compares favorably with more complex products derived from the MODIS sensor on a site‐specific basis. The incorporation of MTCI into a light use efficiency type model, by means of partitioning the fraction of photosynthetic material within a plant canopy, shows most promise for peatland GPP estimation, outperforming all other models. Our results demonstrate that satellite data specifically related to vegetation chlorophyll content may ultimately facilitate improved quantification of peatland carbon flux dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canopy near-infrared reflectance and terrestrial photosynthesis

Global estimates of terrestrial gross primary production (GPP) remain highly uncertain, despite decades of satellite measurements and intensive in situ monitoring. We report a new approach for quantifying the near-infrared reflectance of terrestrial vegetation (NIRV). NIRV provides a foundation for a new approach to estimate GPP that consistently untangles the confounding effects of background ...

متن کامل

Evaluation of rangeland gross primary productivity sensitivity potential to drought using ecosystem modelling

Gross primary productivity is one of the most important factors in the carbon cycle of terrestrial ecosystems. With global warming increase, the frequent drought events and the specific response of regional vegetation to these changes, it is essential to identify and quantify the relationships between climatic and GPP data in arid region. In this study, the responses of gross primary productivi...

متن کامل

Estimating Plant Dry Matter Productivity for AL-Sweeda Badia Rangeland (Syria) at Deferent Processing Levels of BKA, KVA Satellite Images

Estimation of plant dry matter to management of rangelands fast as well as high accuracy is important for managers. Research aims to compare Plant Dry Matter Productivity (PDMP) values estimated by Normalized Difference Vegetation Index (NDVI) derived from satellite images BKA, KVA according to different levels of satellite image processing, for AL-Sweeda Badia (Syria), during the April, July o...

متن کامل

A Vegetation Index to Estimate Terrestrial Gross Primary Production Capacity for the Global Change Observation Mission-Climate (GCOM-C)/Second-Generation Global Imager (SGLI) Satellite Sensor

To estimate global gross primary production (GPP), which is an important parameter for studies of vegetation productivity and the carbon cycle, satellite data are useful. In 2014, the Japan Aerospace Exploration Agency (JAXA) plans to launch the Global Change Observation Mission-Climate (GCOM-C) satellite carrying the second-generation global imager (SGLI). The data obtained will be used to est...

متن کامل

Remote estimation of gross primary productivity in maize and soybean: from close range to satellites

In this study, a model for estimating crop gross primary production (GPP) using the product of a chlorophyll-related vegetation index (VI) and incident photosynthetically active radiation (PARin) was developed and tested. This model, which may be based entirely on satellite data, was tested using Landsat and MODIS data for GPP estimation in both maize and soybean, crop types that differ in leaf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011